Giotto Visualizzatore per Tornio a 2 o 3 assi *Manuale d'uso*

SISTEMI DI MISURA + VISUALIZZATORI DI QUOTE + POSIZIONATORI INEAR AND ROTARY MEASUREMENT SYSTEMS + D R 05 + POSITIONERS

R

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV SOO1

ed. April 2006; rev.1

1. Funzioni base	Pag. 1
2. Memorizzazione dati REF	Pag. 7
3. Funzione di Misurazione della Conicità	Pag. 11

Azzeramento asse

Funzione: eseguire l'azzeramento dell'asse selezionato

Esempio: per azzerare la posizione dell'asse X:

Conversione mm./pollici

Funzione: eseguire e visualizzare la conversione da mm. a pollici e viceversa

Esempio 1: conversione da visualizzazione in pollici a visualizzazione in mm.

Esempio 2: conversione da visualizzazione in mm. a visualizzazione in pollici

Conversione diametro/raggio per asse X

Funzione: La dimensione del pezzo che viene tornito si dimezza rispetto all'incremento di avanzamento trasversale dell'asse X. Quindi, per ottenere la lettura diametrale diretta del pezzo in lavorazione, il visualizzatore offre la modalità di visualizzazione del Diametro e del Raggio per l'asse X.

Esempio 1: la visualizzazione passa da Radiale a Diametrale

Esempio 2: la visualizzazione passa da Diametrale a Radiale

Nella modalità di visualizzazione diametrale, viene mostrato il doppio dell'incremento dell'asse X.

Durante la modalità di visualizzazione diametrale, appare una "d" all'estremità sinistra relativa all'asse X ad indicare che il visualizzatore si trova in modalità Diametrale. La risoluzione del display in modalità diametrale è di 0.01mm, mentre in modalità Radiale è 0.005mm.

FUNZIONI BASE

Impostazione quota asse

Funzione: ricercare il centro del pezzo dividendo a metà la coordinata visualizzata, in modo che il punto zero del pezzo venga localizzato esattamente al centro del pezzo.

Esempio: impostare l'asse X sulla quota 45.800mm

Applicazioni: La funzione di impostazione della quota dell'asse risulta molto utile per il controllo dell'avanzamento trasversale e dell'asse X.

- a) Commutare il visualizzatore in modalità di lettura diametrale (D) per l'asse X
- b) Effettuare un primo taglio sul pezzo, quindi allontanare l'utensile dal pezzo lungo l'asse Z; è molto importante che l'asse X non venga spostato per mantenerlo nella giusta posizione di taglio

Effettuare un primo taglio sul pezzo

allontanare l'utensile dal pezzo lungo l'asse Z; non spostare l'asse X per mantenerlo nella giusta posizione di taglio

c) Effettuare la misurazione del diametro del pezzo con un calibro (per esempio il diametro del pezzo è 45.800mm)

 d) Inserire il valore del diametro del pezzo nel visualizzatore tramite la funzione di pre-impostazione della quota

e) Siccome la posizione dell'utensile sull'asse X si trova nella prima posizione di taglio, poiché il diametro del pezzo è stato preimpostato, da questo momento in poi, ogni quota mostrata dal visualizzatore rappresenta il diametro effettivo del pezzo.

FUNZIONI BASE

Ricerca del centro

Funzione: ricercare il centro del pezzo dividendo a metà la coordinata visualizzata, in modo che il punto zero del pezzo venga localizzato esattamente al centro del pezzo.

Esempio : impostazione del punto zero dell'asse Z al centro del pezzo

Passo 1: portare il tastatore ad una estremità del pezzo, quindi azzerare l'asse Z

Ora il punto zero dell'asse Z (0.000) si trova posizionato esattamente nel centro Z del pezzo

4

Commutazione quote visualizzate ABS / INC

Funzione: utilizzare due tipi di visualizzazione delle quote, ABS (assoluto) e INC (incrementale).

Durante le operazioni di lavorazione, è possibile memorizzare le quote del pezzo (posizione zero) in modalità ABS, quindi commutare in modalità INC e continuare le operazioni di lavorazione.

Si possono azzerare i valori degli assi o inserire qualsiasi quota in ognuno degli assi in modalità INC per impostare le posizioni di lavorazione relative.

La posizione di zero del pezzo (origine pezzo) viene comunque conservata e può essere visualizzata richiamando la modalità ABS.

Commutare dalla modalità ABS (assoluta) alla modalità INC (incrementale) non comporta la perdita del valore di zero del pezzo (zero pezzo).

Esempio 1 : passare dalla visualizzazione in modalità ABS alla visualizzazione in modalità INC

Esempio 2 : passare dalla visualizzazione in modalità INC alla visualizzazione in modalità ABS

FUNZIONI BASE

FUNZIONE MEMORIZZAZIONE DATI REF

FUNZIONE: durante le operazioni giornaliere di lavorazione, può accadere spesso che le operazioni di lavorazione non vengano concluse entro il termine della giornata lavorativa, oppure è necessario spegnere il visualizzatore a fine lavorazione o ancora può verificarsi un'interruzione della corrente elettrica. Può in tutti questi casi verificarsi una perdita dei dati precedentemente impostati (zero pezzo).

E' necessario dunque reinserire i dati relativi al pezzo, tramite tastatore o con altri metodi, ma in questo caso è inevitabile che si creino delle imprecisioni, poiché è impossibile inserire tali dati esattamente nella posizione precedente.

Per consentire il ripristino preciso delle quote del pezzo, bisogna considerare che ogni riga ottica è dotata di un punto di riferimento che permette di memorizzare il punto di lavorazione del pezzo.

Gli aspetti principali della funzione di memorizzazione del punto di riferimento sono i seguenti: Al centro delle righe ottiche si trova un segno di riferimento fisso e permanente, chiamato normalmente segno di riferimento o punto di riferimento (REF).

Poiché la posizione del punto di riferimento *REF* è fissa e permanente, non si modifica né scompare quando il visualizzatore viene spento.

È quindi sufficiente memorizzare la distanza tra il punto di riferimento e la quota del pezzo da lavorare (punto zero); così in caso di mancanza di corrente o di spegnimento del visualizzatore, è possibile recuperare i dati del pezzo (punto zero) impostando la posizione di zero visualizzata alla distanza memorizzata dal punto di riferimento *REF*.

Esempio: memorizzare la quota di lavoro dell'asse Z

Operazione: il visualizzatore fornisce una delle più semplici funzioni di memorizzazione della quota di riferimento **REF**.

Non è necessario memorizzare la distanza relativa fra il segno di riferimento *REF* e lo zero pezzo nel visualizzatore ogni volta che viene modificato il punto zero della quota assoluta **ABS**, come per l'azzeramento, la ricerca del centro, ecc.. Il visualizzatore memorizza automaticamente la distanza relativa tra lo zero assoluto **ABS** e la posizione del segno di riferimento *REF* nella propria memoria.

Durante le operazioni giornaliere, l'operatore deve semplicemente trovare la posizione di riferimento *REF* all'accensione del visualizzatore e lasciare che il visualizzatore riconosca la posizione di riferimento *REF*; quindi il visualizzatore memorizza automaticamente la quota del pezzo ogni volta che viene modificato il punto zero assoluto **ABS**.In caso di mancanza di corrente o di spegnimento del visualizzatore, l'operatore può richiamare facilmente la quota del pezzo servendosi della procedura di ripristino **RECALL 0**.

Ricerca del segno di riferimento REF

FUNZIONE: nella funzione di memorizzazione della quota di riferimento, il visualizzatore memorizza automaticamente la distanza relativa tra la posizione di riferimento *REF* e la quota del pezzo da lavorare (punto zero) ogni volta che l'operatore modifica il punto zero assoluto **ABS**, come nel caso dell'azzeramento, della ricerca del centro, ecc...

Inoltre, è necessario acquisire la posizione di riferimento *REF* prima di eseguire la lavorazione, per evitare la perdita della quota di riferimento del pezzo (punto zero) dovuta a cause accidentali come mancanza di corrente o spegnimento. È opportuno che l'operatore trovi la posizione di riferimento *REF* usando la funzione **FIND REF**, ogni volta che si accende il visualizzatore.

Passo 1: entrare nella funzione REF, selezionare FIND REF (ricerca del segno di riferimento REF)

entrare nella funzione REF

Image: Constrained functione REF

Image: C

Passo 2: selezionare l'asse per il quale deve essere effettuata la ricerca del segno di riferimento REF

Passo 3: spostare gli assi della macchina trasversalmente rispetto al centro della riga ottica fino a quando le cifre visualizzate iniziano a muoversi

Richiamo dello zero pezzo (RECALL 0)

FUNZIONE: in seguito ad un'accidentale perdita della quota del pezzo da lavorare a causa di un calo di corrente o dello spegnimento del visualizzatore, la quota persa può essere richiamata tramite la funzione **RECALL 0** come mostrano le procedure seguenti:

Passo 1: entrare nella funzione REF e selezionare RECALL 0 (ricerca zero pezzo)

POSIZIONE PUNTO DI RIFERIMENTO ASSE Z

FUNZIONE: : Tra le lavorazioni al tornio, quelle di pezzi conici sono piuttosto comuni; il visualizzatore è dotato di una funzione di misurazione della conicità del pezzo da lavorare.

ESEMPIO

Bologna, Italy

Il carrellino posizionato sulla guida trasversale del tornio può essere inclinato di un certa angolazione per eseguire lavorazioni coniche.

Per ottenere lavorazioni coniche di una certa precisione, il visualizzatore dispone della funzione di misurazione della conicità; tale funzione permette di ottenere ottimi risultati in tempi brevi e con facilità.

Di seguito viene mostrata la procedura per verificare la conicità di un pezzo lavorato, ad esempio 20° sul piano XZ:

- a) Regolare il carrellino sulla slitta trasversale del tornio di 20° con la maggiore precisione possibile, seguendo gli indicatori di riferimento posti sulla slitta trasversale; iniziare quindi ad eseguire il taglio conico
- b) Usando un comparatore eseguire le misurazioni della conicità come mostrato di seguito. Impostare l'indicatore come illustrato in figura:

Selezione del senso di conteggio per asse

Se si desidera invertire il senso di conteggio di uno o più assi, agire come segue.

All' accensione, il visualizzatore esegue un ciclo di autodiagnosi. Quando compare la scritta ELBO sui display X, Y e Z, premere ``ENTER``. Al termine del suddetto ciclo, sul display di destra comparirà la scritta ``SET UP``. Premere il tasto 💮 finché compare sul display di destra la scritta ``DIRECTN``; confermare con ``ENTER``. Ora compare la scritta ``SEL AXIS``. Premendo i tasti X, Y e Z si vedrà sul display corrispondente cambiare la cifra da 0 a 1 e viceversa.

Per invertire il senso di conteggio passare da 0 a 1 oppure da 1 a 0.

Si può intervenire solo sugli assi interessati oppure su tutti e tre insieme.

Una volta avvenuta la selezione, confermare con ``ENTER``: ricompare sul display di destra la scritta ``DIRECTN``. Ora, col tasto 🕝 selezionare ``QUIT`` e premere ÈNTER``. Quando i display si riaccendono, <u>SPEGNERE L'APPARECCHIO E RIACCENDERLO DOPO POCHI SECONDI.</u>

Il visualizzatore ora è pronto per lavorare.

Inserimento del coefficiente di compensazione lineare

E' necessario inserire un coefficiente di compensazione lineare quando si verifica una differenza fra la misura effettuata e la lettura sul display del visualizzatore. Tale coefficiente è espresso in parti per milione (PPM) e va calcolato nel modo seguente:

Azzerare il display del visualizzatore dove si verifica la differenza fra spostamento e lettura. Spostare la macchina di una quantità nota (per esempio 500 mm).

Leggere sul display la quota misurata (per esempio 500.19 ovvero un errore di 19 micron).

Rapportare tale errore su una lunghezza di 1000 mm (nel nostro esempio:

19 x 1000/500 = 38.

Questo 38 è il coefficiente da inserire nel visualizzatore nel modo seguente:

spegnere il visualizzatore

accendere dopo qualche secondo il visualizzatore; esso inizierà il ciclo di autodiagnosi. Quando compare la scritta ELBO sui display X, Y e Z, premere ``ENTER``. Al termine del suddetto ciclo, sul display di destra comparirà la scritta ``SET UP``. Premere il tasto finché compare sul display di destra la scritta ``LIN. COMP". confermare con ``ENTER``. Ora compare la scritta ``ENTR. PPM" e dobbiamo inserire il nostro coefficiente di compensazione lineare appena calcolato.

Premere dunque il tasto dell'asse su cui vogliamo il coefficiente (per esempio X) e digitare "38". ATTENZIONE!!!! Il segno algebrico del coefficiente deve essere + se l'errore riscontrato è in eccesso mentre deve essere – se l'errore riscontrato è in difetto rispetto alla misura reale dello spostamento.

Una volta inserito il coefficiente confermare con ``ENTER``.

Ora, col tasto 🕑 selezionare ``QUIT`` e premere ÈNTER``.

Quando i display si riaccendono, <u>SPEGNERE L'APPARECCHIO E RIACCENDERLO</u> DOPO POCHI SECONDI.

Il visualizzatore ora è pronto per lavorare con nuovo coefficiente di compensazione lineare.

	(in accord	do alla guida 22 ISO/IEC e alla norma EN 45014)
Costruttore:	ELBOs.r.l. Via Andrea 40057 - Cac Tel.: (051) 7	Costa, 8/11 Iriano di Granarolo - BOLOGNA 766.228 - 766.258 - Fax: (051) 765.352
• •	DI	CHIARA CHE IL SEGUENTE APPARATO
Nome dell'ap Tipo di appa Opzioni : Anno di cost	parato: GIOT rato: visualizz ruzione: 2003	TO zatore di quote
ÉCO	NFORME AI	REQUISITI DI EMC DEFINITI DALLE SEGUENTI NORME
Emissione E -EN 61000-6 -EN 61000-6 Immunità E -EN61000-4 -EN 61000-4 -EN 61000-4	N 50081 - 2 -3 Condotte -3 Radiate N 50082 - 2 -3 -6 4-2 4-4	30MHz-1GHz 150kHz-30MHz 3 V/m 80÷1000mHz Mod. AM 80% 1kHz linee AC - 3 V/rms 0.15 - 80 MHz Mod. AM 80% 8kV in aria - 4kV contatto linee AC = 2,0kV - linee I/O = 1.0/2.0 kV
L'apparato conformi all	é stato provi a direttiva EM	ato nella configurazione tipica di installazione e con periferich C.
L'apparato compatibilita	sopra descritt à elettromagne	to soddisfa i requisiti EMC definiti dalla direttiva 89/336/CEE sul etica e successive modifica 92/31/CEE e 93/68/CEE
ÉCON	FORME ALR	EQUISITI DELLA LVD DEFINITI DALLE SEGUENTI NORME
-EN 60204	- 1	
L'apparato modifica-93	sopra descritte /68/CEE	o soddisfa i requisiti LVD definiti dalla direttiva 73/23/CEE e
Cadriano: C	Ottobre 2003	
Re In	sponsabile de g. Giampeolo	Ile misure: Direttore Tecnico Biavati Bassi Dario

SISTEMI DI MISURA - VISUALIZZATORI DI DUDTE · POSIZIONIFITORI elos s.r.l. Viz Andrez Costa, 8/13 · 40057 Cadriano, Bologna - MALY tel. +33 051 7.65 226 r.e. · (ax +39 051 765 352 · http://www.elooitaly.t. · e-mailinto@elooitaly.t.

the set of the second state of the second second second state second second second second second second second

La elbo si riserva la facoltà di apportare, senza preavviso, modifiche ai propri Prodotti per migliorarne Qualità ed Affidabilità.

-

=ISO 9001=

